skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kelley, Patrick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In current engineering practice, computer-aided design (CAD) tools play a key role in the design and fabrication of most mechanical systems, including the design of most vehicles. This software tends to rely heavily on human designers to provide the basic design concept, with the software being used to computationally render an existing design, or to perform modifications to a design to achieve incremental improvements in performance. However, an emerging class of computational methods, known astopology optimizationmethods, offers the potential for trueblack boxcomputational design. Under this general framework, practitioners provide the algorithm with the constitutive properties of the design materials, and the mechanical function being designed for (e.g. maximum stiffness under a given loading condition), and the algorithm autonomously generates a description of the corresponding structure. With some exceptions, existing topology optimization methods are limited to generating static, single-body designs. In this study, we present a novel method that builds upon the current state of the art by combining multiple collocated planar design domains to achieve automated computational synthesis of multi-body wheeled vehicles. This capability represents an important step on the path toward automated computational design of increasingly complex, innovative and impactful mechanical systems. 
    more » « less
  2. The seamless integration of technology into the lives of youth has raised concerns about their digital safety. While prior work has explored youth experiences with physical, sexual, and emotional threats—such as bullying and trafficking—a comprehensive and in-depth understanding of the myriad threats that youth experience is needed. By synthesizing the perspectives of 36 youth and 65 adult participants from the U.S., we provide an overview of today’s complex digital-safety landscape. We describe attacks youth experienced, how these moved across platforms and into the physical world, and the resulting harms. We also describe protective practices the youth and the adults who support them took to prevent, mitigate, and recover from attacks and key barriers to doing this effectively. Our findings provide a broad perspective to help improve digital safety for youth and set directions for future work. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    We argue that existing security, privacy, and anti-abuse protections fail to address the growing threat of online hate and harassment. In order for our community to understand and address this gap, we propose a taxonomy for reasoning about online hate and harassment. Our taxonomy draws on over 150 interdisciplinary research papers that cover disparate threats ranging from intimate partner violence to coordinated mobs. In the process, we identify seven classes of attacks—such as toxic content and surveillance—that each stem from different attacker capabilities and intents. We also provide longitudinal evidence from a three-year survey that hate and harassment is a pervasive, growing experience for online users, particularly for at-risk communities like young adults and people who identify as LGBTQ+. Responding to each class of hate and harassment requires a unique strategy and we highlight five such potential research directions that ultimately empower individuals, communities, and platforms to do so. 
    more » « less